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Introduction

• On the other hand, a voltage difference may occur across a component, depending

the type of the component and the overall circuit.

• For unique representation of a node voltage, a reference node should be selected as

a ground. However, the voltage across a component can always be defined uniquely

since it is based on two or more (if the component has multiple terminals) points.

• In circuit analysis, voltages and currents are usually unknowns to be found. Since

they are not known, in most cases, their direction can be arbitrarily selected.

• When the solution gives a negative value for a current or a voltage, it is understood

that the initial assumption is incorrect. This is never a problem at all.

• For consistency, however, it is useful to follow a sign convention by fixing the

voltage polarity and current direction for any given component. In the rest of this

book, the current through a component is always selected to flow from the positive

to the negative terminal of the voltage.



Introduction
5. Electric Energy and Power of a Component

Formally, we define the energy of the component as

Power is defined as the product of its voltage and current. 

If p(t) > 0, the component absorbs energy at that specific time. Otherwise (i.e., if p(t) < 0), 

the component produces energy



Module 3a : RESONANT 

CIRCUITS
Objectives:

1. To study resonant circuits both in time and frequency domains.

2. Describe the conditions for electrical resonance.

3. Describe the mathematical strategy to develop the resonant
frequency expression for a given resonant circuit.

4. Determine the resonant frequency of series, parallel, and series–
parallel circuits.

5. Describe the quality factor.

6. Determine the quality factor of series, parallel, and series–parallel
circuits.

7. Determine the three dB bandwidth from the resonant frequency
and quality factor.

8. Decide whether a resonant circuit has a low Q or a high Q in order
to select the 3 dB determination approach.



Introduction
AC Circuits made up of resistors, inductors and capacitors are said to be

resonant circuits when the current drawn from the supply is in phase with the

impressed sinusoidal voltage. Then

1. The resultant reactance or susceptance is zero. The circuit behaves as a

resistive circuit.

2. The power factor is unity.

Applications in Communication circuits.

The ability of a radio or Television receiver

(1) To select a particular frequency or a narrow band of frequencies transmitted

by broad casting stations.

(2) To suppress a band of frequencies from other broad casting stations, is

based on resonance.



A second order series resonant circuit consists of R,L and C in series. At resonance,

voltages across C and L are equal and opposite and these voltages are many times

greater than the applied voltage. They may present a dangerous shock hazard.

A second order parallel resonant circuit consists of R,L and C in parallel. At

resonance, currents in L and C are circulating currents and they are considerably

larger than the input current. Unless proper consideration is given to the

magnitude of these currents, they may become very large enough to destroy the

circuit elements.

Resonance is desired in tuned circuits, design of filters, signal processing and control

engineering. But it is to be avoided in other circuits. It is to be noted that if R = 0 in a

series RLC circuit, the circuits acts as a short circuit at resonance and if R = ∞ in parallel

RLC circuit, the circuit acts as an open circuit at resonance.



Quality factor (Q-factor) / figure of 

merit

• Circuit efficiency is measured as Q - factor.

• Q – factor makes simple to compare various inductors &

capacitors in terms of efficiency while designing such circuits.

• Definition of Q-factor,

Q = 2π (
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑎𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 𝑖𝑛 𝑎 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟
)



Maximum energy stored in R-L circuit, 𝐸𝐿 =
1

2
𝐿𝐼𝑚

2

Energy dissipated/cycle = Power * time for one cycle

• Average power dissipated in resistor = 𝐼2𝑅 = (
𝐼𝑚

2
)2 𝑅

• Energy dissipated/cycle = (
𝐼𝑚

2
)2 𝑅 ∗ 𝑇 =

1

2
𝐼𝑚
2 𝑅

𝑓

• By definition, Q = 2𝜋 ∗
1

2
𝐿𝐼𝑚

2

1

2
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2 𝑅

𝑓

= 2𝜋𝑓
𝐿

𝑅
=

ꞷ𝐿

𝑅

• Therefore, Q = 
ꞷ𝐿

𝑅



• Similarly consider a RC circuit

• Here, maximum energy stored, 𝐸𝐶 =
1

2
𝐶𝑉𝑚

2

• By definition, 

Q = 2𝜋 ∗
1

2
𝐶𝑉𝑚

2

1

2
𝐼𝑚
2 𝑅

𝑓

= 2𝜋𝑓
𝐶

𝑅

𝑉𝑚

𝐼𝑚

2

=
ꞷ𝐶

𝑅
(
𝐼𝑚
2 𝑋𝐶

2

𝐼𝑚
2 ) =

ꞷ𝐶

𝑅

1

(2𝜋𝑓)2𝐶2
=

ꞷ𝐶

𝑅ꞷ2𝐶2

• Therefore, Q = 
1

ꞷ𝑅𝐶



Series Resonance
i) Derivation of resonant frequency 𝒇𝟎
• Consider a series RLC circuit as shown in fig

• The impedance of series RLC circuit is 𝑍 =
𝑉

𝐼

• Also, 𝑍 = 𝑅 + 𝑗𝑋𝐿 − 𝑗𝑋𝐶 = 𝑅 + 𝑗 𝑋𝐿 − 𝑋𝐶 = 𝑅 + 𝑗(ꞷ𝐿 −
1

ꞷ𝐶
)

Where ꞷ is frequency in radians/sec

• According to definition of resonance, at resonance, reactive part in 

impedance of series RLC circuit is zero. Let frequency be denoted by 

ꞷ0

• Therefore, At resonance, ꞷ0𝐿 −
1

ꞷ0𝐶
= 0

• ꞷ0𝐿 =
1

ꞷ0𝐶
ꞷ0
2 =

1

𝐿𝐶



• ꞷ0
2 =

1

𝐿𝐶

• Therefore, ꞷ0 =
1

𝐿𝐶
rad/sec

• Since ꞷ0 = 2𝜋𝑓0, 𝑤𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒,

• 𝑓0 =
1

2𝜋 𝐿𝐶
HZ

• Thus, in series RLC circuit resonance may be produced either 

varying frequency for given constant values of L & C or varying 

either L & C or both for a given frequency

• At resonance inductive reactance is equal to the capacitive 

reactance.



Q-factor of series resonant circuit

The Q-factor of series resonant

circuit is the Q-factor of inductor or

capacitor in series resonant circuit at

resonant frequency.

At resonance, 𝑋𝐿 = 𝑋𝐶 hence the

energy stored by both the elements

would be same Q-factor of series

resonant circuit is denoted by 𝑄0

At resonance, 𝑄0 =
ꞷ0𝐿

𝑅
=

1

ꞷ0𝑅𝐶

Consider quality factor of series

resonant circuit, we can write,

𝑄0 =
ꞷ0𝐿

𝑅
, where ꞷ𝟎 =

𝟏

𝑳𝑪

𝑄0 =

1

𝐿𝐶
∗𝐿

𝑅
=

1

𝑅

𝐿

𝐶

Therefore, 𝑸𝟎=
𝟏

𝑹

𝑳

𝑪

Similarly, considering

𝑄0=
1

ꞷ0𝑅𝐶
=

1
1

𝐿𝐶
∗𝑅𝐶

=
1

𝑅
∗

1

𝐶
𝐿

=
1

𝑅

𝐿

𝐶

Therefore, 𝑸𝟎=
𝟏

𝑹

𝑳

𝑪
is the

quality factor of series resonant

circuit.

Thus, 𝑄0=
ꞷ0𝐿

𝑅
=

1

ꞷ0𝑅𝐶



Voltage across L & C at resonance

➢ At resonance 𝑰𝟎 =
𝑽

𝑹
.

➢ The voltage across the
inductance is,

𝑉𝐿 = 𝐼0 𝑗𝑋𝐿 = 𝐼0 𝑗ꞷ0𝐿

= 𝑗
𝑉

𝑅
ꞷ0𝐿 = 𝑗

ꞷ0𝐿

𝑅
𝑉

Therefore 𝑽𝑳 = 𝒋𝑸𝟎𝑽

➢ Similarly voltage across the
capacitance is,

𝑉𝐶 = 𝐼0 −𝑗𝑋𝐶 =
𝑉

𝑅

−𝑗

ꞷ0𝐶

= −𝑗
1

ꞷ0𝑅𝐶
𝑉

Therefore 𝑽𝒄 = −𝒋𝑸𝟎𝑽

➢ Practically 𝑸𝟎 > 𝟏.

➢ Voltage developed across L
& C are more than applied
voltage only at resonance.

➢ That means at resonance
series RLC circuit acts as a
voltage amplifier.

➢ 𝑄0 is referred as
magnification factor.



Variation of voltages across L & C with frequency

• Initially at f = 0, capacitor acts as open

circuit & blocks current. Then across

capacitor we have total input voltage

say 𝑉𝑆.

• As frequency increases, 𝑿𝑪

decreases & that of 𝐗𝐋 increases. So

that total (𝑿𝑪 − 𝑿𝑳) decreases &

current increases.

• As the current increases, voltage

across R i.e., 𝑉𝑅 increases & also both

𝑉𝐶 & 𝑉𝐿 increases.

• When frequency equals resonant

frequency, the impedance equals R.

Hence current approaches maximum

value, so also the 𝑉𝑅 reaches

maximum value.



• As the frequency is still increased
above resonant frequency 𝑿𝑳 further
increases & that of 𝑿𝑪 decreases. This
increases total reactance (𝑋𝐶 − 𝑋𝐿), as a
resultant impedance increases & the
current decreases.

• So 𝑽𝑹 decreases & also 𝑽𝑪 & 𝑽𝑳 both
decreases.

• As frequency becomes very high, both
𝑉𝑅 & 𝑉𝐶 value approaches zero while 𝑉𝐿
value approaches 𝑉𝑆.

• Variation of 𝑉𝑅, 𝑉𝐶 & 𝑉𝐿 with frequency
is as shown in fig

• From fig, it is clear that, voltage across
C & voltage across L is not maximum at
resonant frequency.

• At resonant frequency 𝒇𝟎, the voltages
𝑽𝑪 & 𝑽𝑳 are equal in magnitude but
opposite in phase.

• The voltage 𝑽𝑪 is maximum at
frequency 𝑓𝐶 which is less than 𝒇𝟎 &
the voltage 𝑽𝑳 is maximum at
frequency 𝑓𝐿 which is greater than 𝒇𝟎.



Frequencies for maximum voltage across L & C

Consider a series RLC circuit as in fig

𝑉 = 𝑉𝑅 + 𝑉𝐿 + 𝑉𝐶

𝑉𝐶 = 𝐼(−𝑗𝑋𝐶) =
𝐼

𝑗ꞷ𝐶
𝑉𝐿 = 𝐼(𝑗𝑋𝐿) = 𝐼 𝑗ꞷ𝐿
𝑍 = 𝑅 + 𝑗(𝑋𝐿 − 𝑋𝐶)

𝐼 =
𝑉

𝑍
=

𝑉

𝑅 + 𝑗(𝑋𝐿 − 𝑋𝐶)

Therefore 

𝑉𝐶 𝑗ꞷ𝐶 = 𝐼 =
𝑉

𝑅 + 𝑗(𝑋𝐿 − 𝑋𝐶)

=
𝑉𝑅 + 𝑉𝐿 + 𝑉𝐶

𝑅 + 𝑗(ꞷ𝐿 −
1

ꞷ𝐶
)

|𝑉𝐶| =
1

ꞷ𝐶
(

𝑉

𝑅2+(ꞷ𝐿−
1

ꞷ𝐶
)2

)

The voltage across capacitor is as above.

The frequency 𝑓𝐶 at which 𝑉𝐶 is 
maximum can be obtained by equating 
𝑑𝑉𝐶

2

𝑑ꞷ
= 0

𝑉𝐶
2 =

1

ꞷ2𝐶2
∗

𝑉2

𝑅2+(ꞷ𝐿−
1

ꞷ𝐶
)2

= 
𝑉2

ꞷ2𝐶2𝑅2+(ꞷ2𝐿𝐶−1)2

𝑑𝑉𝐶
2

𝑑ꞷ
=

−𝑉2(2ꞷ𝑅2𝐶2+2(ꞷ2𝐿𝐶−1)(2ꞷ𝐿𝐶)

[ꞷ2𝐶2𝑅2+(ꞷ2𝐿𝐶−1)2]2
= 0



2ꞷ𝑅2𝐶2 + 2 ꞷ2𝐿𝐶 − 1 2ꞷ𝐿𝐶 = 0
2ꞷ[𝑅2𝐶2 + 2𝐿𝐶(ꞷ2𝐿𝐶 − 1)] = 0
𝑅2𝐶2 + 2ꞷ2𝐿2𝐶2 − 2𝐿𝐶 = 0
2ꞷ2𝐿2𝐶2 = 2𝐿𝐶 − 𝑅2𝐶2

ꞷ2 =
2𝐿𝐶

2𝐿2𝐶2
−

𝑅2𝐶2

2𝐿2𝐶2

ꞷ =
1

𝐿𝐶
−

𝑅2

2𝐿2
rad/sec

Therefore, the frequency 𝑓𝐶 at which 

inductor voltage 𝑉𝐶 is maximum is given by, 

𝑓𝐶 =
1

2𝜋

1

𝐿𝐶
−

𝑅2

2𝐿2
at 𝑉𝐶 maximum

Similarly voltage across inductor is, 

𝑉𝐿 = 𝑗ꞷ𝐿
𝑉

𝑅 + 𝑗 𝑋𝐿 − 𝑋𝐶

|𝑉𝐿| =
𝑉ꞷ𝐿

𝑅2+(ꞷ𝐿−
1

ꞷ𝐶
)2)

Squaring on both sides,

|𝑉𝐿|
2 =

𝑉2ꞷ2𝐿2

𝑅2 + (ꞷ𝐿 −
1

ꞷ𝐶)
2)

= 
𝑉2ꞷ4𝐿2𝐶2

ꞷ2𝐶2𝑅2+(ꞷ2𝐿𝐶−1)2

By differentiating 𝑉𝐿
2 𝑤. 𝑟. 𝑡 ꞷ & equating 

only numerator term to zero we have,

2ꞷ2𝐿𝐶 − ꞷ2𝐶2𝑅2 − 2 = 0
ꞷ2 2𝐿𝐶 − 𝐶2𝑅2 = 2

ꞷ2 =
2

2𝐿𝐶 − 𝐶2𝑅2

ꞷ2 =
1

𝐿𝐶 −
𝐶2𝑅2

2

ꞷ =
1

𝐿𝐶−
𝐶2𝑅2

2

rad / sec

Therefore, the frequency 𝑓𝐿 at which 
inductor voltage 𝑉𝐿 is maximum is given by, 

𝑓𝐿 =
1

2𝜋

1

𝐿𝐶−
𝐶2𝑅2

2





• It is defined as the width of resonant

curve upto frequency at which the

power in the circuit is half of its

maximum value.

• From fig,

• 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = (𝑓2 − 𝑓1) Hz

• At resonance, 𝐼0 =
𝑉

𝑅
.

& hence power in the circuit is also

maximum,

• 𝑃0 = 𝑃𝑚𝑎𝑥 = 𝐼0
2 ∗ 𝑅

• Now, half of maximum power is

given by,

• 𝑃| =
𝑃0

2
=

𝐼0
2𝑅

2
= (

𝐼0

2
)2∗ 𝑅

• So at the frequencies, where power in

the circuit is half of its maximum

value, current becomes (
1

2
) times or

0.707 times of its maximum value.

• At resonant frequency, power in 

circuit is given by,

• 𝑃0 = 𝑃𝑚𝑎𝑥 = 𝐼0
2 ∗ 𝑅

• At frequency 𝑓1, power in circuit 

is half & it is given by,

• 𝑃| =
𝐼0
2𝑅

2
&

• Similarly, at frequency 𝑓2, power 

in circuit is half & it is given by,

• 𝑃| =
𝐼0
2𝑅

2
&

• Thus, 𝑓1, is called lower half-

power frequency & 𝑓2, is called 

upper half-power frequency.

BANDWIDTH



• 𝑅2 + (ꞷ𝐿 −
1

ꞷ𝐶
)2 = 2 𝑅

• Squaring on both sides,

• 𝑅2 + (ꞷ𝐿 −
1

ꞷ𝐶
)2 = 2𝑅2

• (ꞷ𝐿 −
1

ꞷ𝐶
)2= 𝑅2

• ꞷ𝐿 −
1

ꞷ𝐶
= ±𝑅 −−−− − 2

• Thus from above equation (2), at half-

power frequencies 𝑓1 & 𝑓2, the reactive 

part of impedance of series RLC circuit is 

equal to resistive part of impedance.

• Equation (2) is quadratic in ꞷ, hence we 

can write,

• ꞷ2𝐿 −
1

ꞷ2𝐶
= +𝑅 −−−−− 3

• ꞷ1𝐿 −
1

ꞷ1𝐶
= −𝑅 −−−− − 4

• The half-power frequencies are also 

referred as 3dB frequencies or  3dB 

points because the power at these 

frequencies is  3dB less than that at the 

resonance.

• The current in a series RLC circuit is 

given by equation, 

𝐼 =
𝑉

𝑍
= 

𝑉

𝑅2+(ꞷ𝐿−
1

ꞷ𝐶
)2

------(1)

• At half power point, 𝐼 =
𝐼0

2
= 

1

2

𝑉

𝑅

because 𝐼0 =
𝑉

𝑅
at resonance

• Therefore, 
1

2

𝑉

𝑅
=

𝑉

𝑅2+(ꞷ𝐿−
1

ꞷ𝐶
)2



• ꞷ2𝐿 −
1

ꞷ2𝐶
= +𝑅 −−−−− 3

• ꞷ1𝐿 −
1

ꞷ1𝐶
= −𝑅 −−−−− 4

• Adding equations (3) & (4), we have

• (ꞷ1 + ꞷ2)𝐿 −
1

ꞷ1
+

1

ꞷ2

1

𝐶
= 0

• Therefore, (ꞷ1 + ꞷ2)𝐿 - (
ꞷ1+ꞷ2

ꞷ1ꞷ2
)
1

𝐶
= 0

• (ꞷ1 + ꞷ2)𝐿 = (
ꞷ1+ꞷ2

ꞷ1ꞷ2
)
1

𝐶

• ꞷ1ꞷ2 =
1

𝐿𝐶
−−−−− 5

• But from condition of resonance, 

ꞷ0 = 
1

𝐿𝐶

• Therefore, ꞷ1ꞷ2 = ꞷ0
2

• i.e., 𝑓1𝑓2 = 𝑓0
2

• This shows that the resonant frequency is 

the geometric mean of two half power 

frequencies.

• Thus, 𝑓0 = 𝑓1𝑓2

• Subtracting equation (3) & (4), we get

• (ꞷ𝟐 − ꞷ𝟏)𝑳 + 
𝟏

ꞷ𝟏
−

𝟏

ꞷ𝟐

𝟏

𝑪
= 2R

• (ꞷ𝟐 − ꞷ𝟏) + (
ꞷ𝟐−ꞷ𝟏

ꞷ𝟏ꞷ𝟐
)
𝟏

𝑳𝑪
= 
𝟐𝑹

𝑳

• From equation (5), ꞷ𝟏ꞷ𝟐 =
𝟏

𝑳𝑪

• (ꞷ𝟐 − ꞷ𝟏) + (ꞷ𝟐 − ꞷ𝟏) = 
𝟐𝑹

𝑳

• (ꞷ𝟐 − ꞷ𝟏) =
𝑹

𝑳

• Bandwidth, 𝒇𝟐 − 𝒇𝟏 =
𝑹

𝟐𝝅𝑳



• Selectivity of a resonant circuit is defined as 

the ability of a circuit to discriminate or 

distinguish between desired and undesired 

frequencies.

• Selectivity is also defined as the ratio of 

resonant frequency to the bandwidth of 

resonant circuit.

• Therefore, 

Selectivity = 
𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
=

𝑓0

𝑓2− 𝑓1

• Also, Bandwidth, 𝑓2 − 𝑓1 =
𝑅

2𝜋𝐿

• Therefore, 

Selectivity = 
𝑓0

𝑓2− 𝑓1
=

𝑓0

(
𝑅

2𝜋𝐿
)
=

(2𝜋𝑓0)𝐿

𝑅
=

ꞷ0𝐿

𝑅

• Where Q-factor, 𝑄0 = 
ꞷ0𝐿

𝑅

• Therefore, Selectivity = 
ꞷ0𝐿

𝑅
= 𝑄0

• Thus, selectivity of series resonant 

circuit is directly proportional to the 

quality factor of circuit at resonant 

frequency.

• Selectivity = 𝑄0 =
𝑓0

𝐵.𝑊
=

𝑓0

𝑓2− 𝑓1

• Therefore, 

Bandwidth = 𝑓2 − 𝑓1 =
𝑓0

𝑄0

Selectivity



• A parallel circuit is said to be in resonance 

when applied voltage & resulting current in 

phase that gives unity power factor 

condition.

a) Derivation of resonant frequency (𝒇𝒂𝒓) for 

the circuit R-L parallel with C.

• Consider parallel resonant circuit as shown in 

fig with applied voltage V & total resulting 

current I.

• The admittance of branch containing L &  𝑅𝐿
is given by,

• 𝒀𝑳 =
𝟏

𝑹𝑳+𝒋𝑿𝑳

=
𝑅𝐿−𝑗𝑋𝐿

𝑅𝐿
2+𝑋𝐿

2 =
𝑹𝑳−𝒋𝑿𝑳

𝑹𝑳
𝟐+ꞷ𝟐𝑳𝟐

−−− − 1

• The admittance of branch containing C  is 

given by

𝒀𝑪 =
𝟏

−𝒋𝑿𝑪
= 𝑗

1

𝑋𝐶

= 𝑗
1

1
ꞷ𝐶

= 𝒋ꞷ𝑪 −−− − 2

• Hence, total admittance of parallel 

circuit is given by,

𝒀 = 𝒀𝑳 + 𝒀𝑪

• Therefore, 𝑌 =
𝑹𝑳−𝒋ꞷ𝑳

𝑹𝑳
𝟐+ꞷ𝟐𝑳𝟐

+ 𝒋ꞷ𝑪

𝑌

=
𝑅𝐿

𝑅𝐿
2 + ꞷ2𝐿2

+ 𝑗 ꞷ𝐶 −
ꞷ𝐿

𝑅𝐿
2 + ꞷ2𝐿2

− (3)

• At resonance, imaginary part i.e, 

susceptance becomes zero. Let the 

resonant frequency of parallel 

resonant circuit be denoted by ꞷ𝑎𝑟.

Thus at ꞷ = ꞷ𝒂𝒓,

• ꞷ𝑎𝑟𝐶 =
ꞷ𝑎𝑟𝐿

𝑅𝐿
2+ꞷ𝑎𝑟

2𝐿2
= 0

• ꞷ𝑎𝑟𝐶 =
ꞷ𝑎𝑟𝐿

𝑅𝐿
2+ꞷ𝑎𝑟

2𝐿2

• 𝐶(𝑅𝐿
2+ꞷ𝑎𝑟

2𝐿2) = 𝐿

• (𝑹𝑳
𝟐+ꞷ𝒂𝒓

𝟐𝑳𝟐) =
𝑳

𝑪
−−−−−− 4

Parallel Resonance / Anti-Resonance



ꞷ𝑎𝑟
2𝐿2 =

𝐿

𝐶
− 𝑅𝐿

2

ꞷ𝑎𝑟
2 =

1

𝐿𝐶
−

𝑅𝐿
2

𝐿2

ꞷ𝑎𝑟 =
1

𝐿𝐶
−

𝑅𝐿
2

𝐿2

𝑓𝑎𝑟 =
1

2𝜋

1

𝐿𝐶
−

𝑅𝐿
2

𝐿2
−−−−−− 5

𝑓𝑎𝑟 is the resonant frequency. This parallel resonance is possible as long as 
1

𝐿𝐶
>

𝑅𝐿
2

𝐿2
,

Otherwise 𝑓𝑎𝑟 will be imaginary.

𝑌 =
1

𝑍
=

𝑅𝐿

𝑅𝐿
2+ꞷ2𝐿2

Therefore, 𝑍 =
𝑅𝐿
2+ꞷ2𝐿2

𝑅𝐿

But we have, 𝑹𝑳
𝟐 + ꞷ𝟐𝑳𝟐 =

𝑳

𝑪

Therefore, 𝒁𝒂𝒓 =
𝑳

𝑪𝑹𝑳
−−−−−− 6

Consider equation(4), 𝑅𝐿
2+ꞷ𝑎𝑟

2𝐿2 =
𝐿

𝐶

𝑅𝐿
2(1 +

ꞷ𝒂𝒓
𝟐𝑳𝟐

𝑹𝑳
𝟐 ) =

𝐿

𝐶
𝑅𝐿(1 + 𝑸𝟎

𝟐) =
𝑳

𝑪𝑹𝑳
= 𝒁𝒂𝒓



b) Derivation of resonant frequency (𝒇𝒂𝒓)
for the circuit R-L parallel with R-C.

• Consider a general parallel RLC circuit 

shown in fig with applied voltage V & 

total resulting current I.

• The condition of parallel resonance is 

that the impedance of the parallel 

combination is purely resistive.

• The admittance of branch containing L 

& 𝑅𝐿 is given by

• 𝒀𝑳 =
𝟏

𝑹𝑳+𝒋𝑿𝑳
=

𝑹𝑳−𝒋𝑿𝑳

𝑹𝑳
𝟐+𝑿𝑳

𝟐 … by rationalizing

• The admittance of branch containing C 

& 𝑅𝐶 is given by

• 𝒀𝑪 =
𝟏

𝑹𝑪−𝒋𝑿𝑪
=

𝑹𝑪+𝒋𝑿𝑪

𝑹𝑪
𝟐+𝑿𝑪

𝟐 … by rationalizing

• Therefore, Total admittance Y is 

given by,

• 𝒀 = 𝒀𝑳 + 𝒀𝑪

• 𝑌 =
𝑹𝑳−𝒋𝑿𝑳

𝑹𝑳
𝟐+𝑿𝑳

𝟐 +
𝑹𝑪+𝒋𝑿𝑪

𝑹𝑪
𝟐+𝑿𝑪

𝟐

• 𝑌 =
𝑹𝑳

𝑹𝑳
𝟐+𝑿𝑳

𝟐 +
𝑹𝑪

𝑹𝑪
𝟐+𝑿𝑪

𝟐 + 𝑗 ൬

൰

𝑿𝑪

𝑹𝑪
𝟐+𝑿𝑪

𝟐 −

𝑿𝑳

𝑹𝑳
𝟐+𝑿𝑳

𝟐

• At resonance, susceptance(imaginary 

part of admittance) becomes zero. 

Therefore, we have condition as,

•
𝑿𝑪

𝑹𝑪
𝟐+𝑿𝑪

𝟐 −
𝑿𝑳

𝑹𝑳
𝟐+𝑿𝑳

𝟐 = 0

•
𝑿𝑪

𝑹𝑪
𝟐+𝑿𝑪

𝟐 =
𝑿𝑳

𝑹𝑳
𝟐+𝑿𝑳

𝟐



•

𝟏

ꞷ𝒂𝒓𝑪

𝑹𝑪
𝟐+(

𝟏

ꞷ𝒂𝒓𝑪
)𝟐
=

ꞷ𝒂𝒓𝑳

𝑹𝑳
𝟐+ꞷ𝒂𝒓

𝟐𝑳𝟐

• 𝑹𝑳
𝟐 + ꞷ𝒂𝒓

𝟐𝑳𝟐 = (ꞷ
𝒂𝒓
𝑪) (ꞷ

𝒂𝒓
𝑳) [𝑹𝑪

𝟐 +
𝟏

ꞷ𝒂𝒓
𝟐𝑪𝟐

]

• 𝑅𝐿
2 + ꞷ𝑎𝑟

2𝐿2 = ꞷ𝑎𝑟
2𝐿𝐶 𝑅𝐶

2 +
𝐿

𝐶

• ꞷ𝑎𝑟
2𝐿2 − ꞷ𝑎𝑟

2𝐿𝐶 𝑅𝐶
2 =

𝐿

𝐶
− 𝑅𝐿

2

• ꞷ𝑎𝑟
2𝐿𝐶

𝐿

𝐶
− 𝑅𝐶

2 =
𝐿

𝐶
− 𝑅𝐿

2

• ꞷ𝑎𝑟
2 =

1

𝐿𝐶
[

𝐿

𝐶
− 𝑅𝐿

2

𝐿

𝐶
− 𝑅𝐶

2
]

• ꞷ𝑎𝑟 =
1

𝐿𝐶

𝑅𝐿
2−

𝐿

𝐶

𝑅𝐶
2−

𝐿

𝐶

• 𝑓𝑎𝑟 =
1

2𝜋 𝐿𝐶

𝑅𝐿
2−

𝐿

𝐶

𝑅𝐶
2−

𝐿

𝐶

• If 𝑅𝐿 = 𝑅𝐶 =
𝐿

𝐶

• 𝑓𝑎𝑟 =
1

2𝜋 𝐿𝐶

(
𝐿

𝐶
)2−

𝐿

𝐶

(
𝐿

𝐶
)2−

𝐿

𝐶

• 𝑓𝑎𝑟 =
1

2𝜋 𝐿𝐶

• Where 𝑓𝑎𝑟 is frequency of resonance. 

The values of 𝑅𝐿& 𝑅𝐶 are in general 

very small.



List of the formulae of Series Resonant Circuit

➢ 𝒇𝟎 =
𝟏

𝟐𝝅 𝑳𝑪

➢ At resonance, 𝑰𝟎 =
𝑽

𝑹

➢ 𝑸𝟎=
ꞷ𝟎𝑳

𝑹
=

𝟏

ꞷ𝟎𝑹𝑪
; B.W = 𝒇𝟐 − 𝒇𝟏 = 

𝑹

𝟐𝝅𝑳
= 

𝒇𝟎

𝑸𝟎

➢ 𝑽𝑳 = 𝑰𝟎𝑿𝑳;             𝑽𝑪= 𝑰𝟎𝑿𝑪

➢ B.W = 2∆𝒇; 𝒇𝟏 = 𝒇𝟎 − ∆𝒇 ; 𝒇𝟐 = 𝒇𝟎 + ∆𝒇

➢ 𝒇𝟎 = 𝒇𝟏𝒇𝟐

➢ 𝑸 =
𝟏

𝑹

𝑳

𝑪

➢ 𝒇𝑪 =
𝟏

𝟐𝝅

𝟏

𝑳𝑪
−

𝑹𝟐

𝟐𝑳𝟐
𝒇𝑳 =

𝟏

𝟐𝝅

𝟏

𝑳𝑪−
𝑪𝟐𝑹𝟐

𝟐



Numerical on Series Resonant Circuit
1. A coil of 5Ω resistance & 0.1H inductance is connected in series with a

capacitance of 50µF across an AC supply of 10V of variable frequency. Determine

i) Resonant frequency ii) Current at resonance iii) Q-factor of the coil. iv)

Bandwidth v) Voltage across L & C vi) Compute the lower & upper frequency

limits.

Solution:

i) The series resonant frequency,

𝑓0 =
1

2𝜋 𝐿𝐶
=

1

2𝜋 0.1 ∗ 50µ
= 𝟕𝟏. 𝟏𝟕𝟔 𝑯𝒛

ii) Current at resonance, 𝐼0 =
𝑉

𝑅
=

10

5
= 𝟐𝑨

iii) 𝑄0=
ꞷ0𝐿

𝑅
=

2𝜋𝑓0𝐿

𝑅
=

2𝜋∗71.176∗0.1

5
= 𝟖. 𝟗𝟒𝟒 = 𝟗

iv) B.W = 
𝑓0

𝑄0
=

71.176

9
= 𝟕. 𝟗𝟏𝑯𝒛

v) 𝑉𝐿 = 𝐼0𝑋𝐿 = 2 ∗ (2𝜋 ∗ 71.176 ∗ 0.1) = 𝟖𝟗. 𝟒𝟒𝑽

𝑉𝐶 = 𝐼0𝑋𝐶 = 2 ∗
1

2𝜋 ∗ 71.176 ∗ 50µ
= 𝟖𝟗. 𝟒𝟒𝑽



vi) The lower frequency is given by 𝒇𝟏 = 𝒇𝟎 − ∆𝒇

where B.W = 2∆𝒇

Therefore, ∆𝑓 =
𝐵.𝑊

2
=

7.91

2
= 𝟑. 𝟗𝟔 𝑯𝒛

Therefore, 𝑓1 = 𝑓0 − ∆𝑓 = 71.176 − 3.96 = 𝟔𝟕. 𝟐𝟏𝟔 𝑯𝒛

The upper frequency is given by 𝑓2 = 𝑓0 + ∆𝑓

𝑓2 = 71.176 + 3.96 = 𝟕𝟓. 𝟏𝟑𝟔 𝑯𝒛



2. A series RLC circuit has R=50Ω, L = 1H, C=50µF connected

across ac variable frequency of 100V. Calculate resonant frequency

& half power frequencies.

Solution:

𝑓0 =
1

2𝜋 𝐿𝐶
=

1

2𝜋 1 ∗ 50µ
= 𝟐𝟐. 𝟓𝟏 𝑯𝒛

w.k.t𝑓0 = 𝑓1𝑓2 𝑓0
2 = 𝑓1𝑓2 𝑓1 =

506.61

𝑓2

w.k.t, B.W = 𝑓2 − 𝑓1 =
𝑓0

𝑄0

𝑄0=
ꞷ0𝐿

𝑅
=

2𝜋𝑓0𝐿

𝑅
=

2𝜋 ∗ 22.51 ∗ 1

50
= 𝟐. 𝟖𝟑 = 𝟑

𝑓2 − 𝑓1 =
22.51

3
= 𝟕. 𝟓𝟎𝟑 𝑯𝒛

Therefore, 𝑓2 −
506.61

𝑓2
= 7.503

𝑓2
2 − 7.503𝑓2 − 506.61 = 0 ; Therefore, 𝑓2 = 𝟐𝟔. 𝟓𝟕 𝑯𝒛

Therefore, 𝑓1 =
506.61

𝑓2
=

506.61

26 57
= 𝟏𝟗. 𝟏 𝑯𝒛



4. The voltage applied to the series RLC circuit is 0.85V. The Q of the coil is 50 &
the value of capacitor is 320PF. The resonant frequency of the circuit is 175Khz.
Find the value of inductance, the circuit current & voltage across capacitor &
inductor.

Solution:

V = 0.85V; Q = 50; C = 320Pf; 𝑓0 = 175 𝑘𝐻𝑧

𝑄0=
1

ꞷ0𝑅𝐶
R =

1

2𝜋∗175∗10−3∗320∗10−12∗50
= 𝟓𝟔. 𝟖𝟒Ω

𝑄 =
1

𝑅

𝐿

𝐶

𝐿

𝐶
= 50 ∗ 56.84

Therefore, L = 2.58mH

𝐼0 =
𝑉

𝑅
=

0.85

56.84
= 𝟏𝟒. 𝟗𝟓𝒎𝑨

𝑉𝐿 = 𝐼0ꞷ0𝐿 = 14.95 ∗ 10−3 ∗ 2𝜋 ∗ 175 ∗ 103* 2.58∗ 10−3= 𝟒𝟐. 𝟕𝟒 𝑽
𝑉𝐶 = 𝐼0/ꞷ0𝐶 = 14.95 ∗ 10−3 ∗ 2𝜋 ∗ 175 ∗ 103* 320∗ 10−12= 𝟒𝟐. 𝟒𝟖𝟖 𝑽

𝑓𝐶 =
1

2𝜋

1

𝐿𝐶
−

𝑅2

2𝐿2
=

1

2𝜋

1

2.58∗10−3∗320∗10−12
−

56.842

2(2.58∗10−3)2
= 175.14 kHz

𝑓𝐿 =
1

2𝜋

1

𝐿𝐶−
𝐶2𝑅2

2

=
1

2𝜋

1

2.58∗10−3∗320∗10−12−
(320∗10−12)2(56.84)2

2

= 175.17 kHz



3. A series RLC circuit includes 1µF capacitor & a resistance of 16Ω.

If the bandwidth is 500 rad/sec. Determine ꞷ𝒓, Q & L.

Solution:

B.W = 500 rad/sec = ꞷ2 − ꞷ1

R = 16Ω

C = 1µF

B.W = ꞷ𝟐 − ꞷ𝟏 =
𝑹

𝑳

L =
16

500
= 32 𝑚𝐻

ꞷ𝑟 =
1

𝐿𝐶
=

1

32 ∗ 10−3 ∗ 1 ∗ 10−6
= 𝟓𝟓𝟗𝟎. 𝟏𝟕 𝒓𝒂𝒅 /𝒔𝒆𝒄

𝑄 =
ꞷ𝑟

𝐵.𝑊
=

5590.17

500
= 𝟏𝟏. 𝟏𝟖𝟎𝟑



5. A series RLC circuit has R = 10Ω, L = 0.01H & C=0.01µF & it is

connected across 10mV supply. Calculate i) 𝒇𝟎, ii) 𝑸𝟎 iii) Bandwidth

iv) 𝒇𝟏 & 𝒇𝟐 v) 𝑰𝟎
Solution:

i) 𝑓0 =
1

2𝜋 𝐿𝐶
=

1

2𝜋 0.01∗0.01µ
= 𝟏𝟓. 𝟗𝟐 𝒌𝑯𝒛

𝑖𝑖) 𝑄0=
ꞷ0𝐿

𝑅
=

2𝜋𝑓0𝐿

𝑅
=

2𝜋∗15.92∗ 103∗0.01

10
= 𝟏𝟎𝟎

iii) B.W = 𝑓2 − 𝑓1 =
𝑓0

𝑄0
=

15.92∗ 103

100
= 𝟏𝟓𝟗. 𝟐 𝑯𝒛

iv) B.W = 2∆𝑓

∆𝑓 =
159.2

2
= 79.6 Hz

𝑓1 = 𝑓0 − ∆𝑓 = 15.92 ∗ 103 − 79.6 = 𝟏𝟓. 𝟖𝟒 𝐤𝐇𝐳

𝑓2 = 𝑓0 + ∆𝑓 = 15.92 ∗ 103 + 79.6 = 𝟏𝟓. 𝟗𝟗𝟗 𝐤𝐇𝐳

v) 𝐼0 =
𝑉

𝑅
=

10∗10−3

10
= 𝟏𝒎𝑨



List of the formulae of Parallel Resonant Circuit

➢ 𝑸𝒂𝒓=
ꞷ𝒂𝒓𝑳

𝑹
=

𝟏

ꞷ𝒂𝒓𝑪𝑹
; Bandwidth = 𝒇𝟐 − 𝒇𝟏 =

𝒇𝒂𝒓

𝑸𝟎

➢𝒁𝟎 =
𝑳

𝑹𝑪
or 𝒁𝒂𝒓 =

𝑳

𝑹𝑳𝑪

➢ 𝒇𝒂𝒓 =
𝟏

𝟐𝝅 𝑳𝑪

𝑹𝑳
𝟐−

𝑳

𝑪

𝑹𝑪
𝟐−

𝑳

𝑪

➢ 𝒇𝒂𝒓 =
𝟏

𝟐𝝅

𝟏

𝑳𝑪
−

𝑹𝑳
𝟐

𝑳𝟐
; 𝒇𝒂𝒓 =

𝟏

𝟐𝝅 𝑳𝑪
𝟏 −

𝟏

𝑸𝟎
𝟐

➢The current at parallel resonance, 𝑰𝟎 =
𝑽

𝒁𝒂𝒓

➢𝒁𝒂𝒓 = 𝑹𝑳 (𝟏 + 𝑸𝟎
𝟐)



6. In a parallel resonant circuit
R,L,C half power frequencies
are 103 & 118 rad/sec
respectively. The magnitude of
impedance at 105 rad/sec is
10Ω. Find R,L & C

Solution:-

ꞷ1 = 103 𝑟𝑎𝑑/𝑠𝑒𝑐
ꞷ2 = 118 𝑟𝑎𝑑/𝑠𝑒𝑐
ꞷ𝑎𝑟 = 105 𝑟𝑎𝑑/𝑠𝑒𝑐

𝑍𝑎𝑟 = 10 Ω
BW = ꞷ2 − ꞷ1

= 118 − 103 = 15 𝑟𝑎𝑑/𝑠𝑒𝑐

𝑄𝑎𝑟=
ꞷ𝑎𝑟𝐿

𝑅

𝑄𝑎𝑟=
ꞷ𝑎𝑟

𝐵.𝑊
=

105

15
= 7

Therefore,
𝐿

𝑅
=

7

105

Therefore, L =
7𝑅

105

𝑍0 =
𝐿

𝑅𝐶
=

7

105
∗

𝑅

𝑅𝐶
=

7

105𝐶

10 =
7

105 𝐶
Therefore, C = 6.67 mF

𝑄𝑎𝑟 =
1

ꞷ𝑎𝑟𝐶𝑅

𝑅 =
1

7 ∗ 105 ∗ 6.67 ∗ 10−3

= 0.204Ω

L =
7∗0.204

105
= 13.6 𝑚𝐻

Numerical on Parallel Resonant Circuit



7. A two branch anti-resonant circuit

contains L = 0.4H & C = 40µF.

Resonance is to be achieved by

variation of 𝑹𝑳 & 𝑹𝑪. Calculate the

resonance frequency for the following

cases.

i) 𝑅𝐿 = 120Ω, 𝑅𝐶 = 80Ω

ii) 𝑅𝐿 = 80Ω, 𝑅𝐶 = 0Ω

iii) 𝑅𝐿 = 𝑅𝐶 = 100Ω

Solution:

The resonant circuit is shown in fig,

i) L = 0.4H, C = 40µF, 𝑅𝐿 = 120Ω, 𝑅𝐶 =
80Ω

𝑓𝑎𝑟 =
1

2𝜋 𝐿𝐶

𝑅𝐿
2 −

𝐿
𝐶

𝑅𝐶
2 −

𝐿
𝐶

𝑓𝑎𝑟 =
1

2𝜋 0.4∗40∗10−6

1202−(
0.4

40∗10−6
)

802−(
0.4

40∗10−6
)

With 

𝑅𝐶 = 80Ω, the frequency comes out to be 

imaginary which is absurd

ii) L = 0.4H , C = 40µF, 𝑅𝐿 = 80Ω, 𝑅𝐶 = 0.
𝑓𝑎𝑟 = 23.87 𝐻𝑧

iii) 𝑅𝐿 = 𝑅𝐶 = 100Ω
𝑓𝑎𝑟 = 39.7887 𝐻𝑧



8. A coil of inductance 10H & 10Ω resistance is connected

in parallel with 100 Pf capacitor. The combination is

applied with a voltage of 100V. Find resonant frequency &

current at resonance

Solution: 𝑅𝐿 = 10Ω, 𝐿 = 10𝐻, 𝐶 = 100𝑃𝐹

𝑓𝑎𝑟 =
1

2𝜋

1

𝐿𝐶
−

𝑅𝐿
2

𝐿2
=

1

2𝜋

1

10∗100∗10−12
−

102

102
= 5.033 kHz

At resonant frequency, the impedance of parallel resonant

circuit is

𝑍𝑎𝑟 =
𝐿

𝑅𝐿𝐶
=

10

10∗100∗10−12
= 10 ∗ 109 Ω

The current at parallel resonance, 𝐼0 =
𝑉

𝑍𝑎𝑟
=

100

10∗109
= 10𝑛𝐴



9. A parallel circuit has a fixed
capacitor & variable inductor having
constant quality factor of 4. Find value
of inductance & capacitance for circuit
impedance of 1000Ω at resonating
frequency 2.4 Mhz. What is bandwidth
of circuit?

Solution: 𝑄0 = 4; 𝑍𝑎𝑟 = 1000Ω;
𝑓𝑎𝑟 = 2.4 Mhz

𝑍𝑎𝑟 =
𝐿

𝑅𝐿𝐶
Also, 𝑍𝑎𝑟 = 𝑅𝐿 (1 + 𝑄0

2)
1000 = 𝑅𝐿 (1 + 42)
Therefore, 𝑅𝐿 = 58.82 Ω

𝑍𝑎𝑟 =
𝐿

𝑅𝐿𝐶
=1000

𝐿

𝐶
= 1000 𝑅𝐿

𝐿

𝐶
= 1000 ∗ 58.82

Therefore, 
𝐿

𝐶
= 58.82 ∗ 103 --------(1)

𝑓𝑎𝑟 =
1

2𝜋

1

𝐿𝐶
−

𝑅𝐿
2

𝐿2

Also 𝑓𝑎𝑟 =
1

2𝜋 𝐿𝐶
1 −

1

𝑄0
2 = 𝑓𝑎𝑟 =

1

2𝜋 𝐿𝐶
1 −

1

16

2.4 ∗ 106 2 =
1

4𝜋2 𝐿𝐶

15

16

Therefore, LC = 4.1227 * 10−15

---------(2)

From equation (1) & (2), 

L = 15.57 µH;                                           

C = 0.264nF

Bandwidth = 𝑓2 − 𝑓1 =
𝑓𝑎𝑟

𝑄0

= 
2.4∗ 106

4
= 0.6 Mhz



10 Two impedances 𝒁𝟏 = 𝟐𝟎 + 𝒋𝟏𝟎 & 𝒁𝟐 = 𝟏𝟎 − 𝒋𝟑𝟎 are connected in parallel & 

this combination is connected in series with 𝒁𝟑 = 𝟑𝟎 + 𝒋𝑿. Find the value of X 

which will produce resonance.

Solution: The total impedance is given by,

𝑍 = 𝑍3 + (𝑍1||𝑍2)

𝑍 = 30 + 𝑗𝑋 +
20 + 𝑗10 ∗ 10 − 𝑗30

20 + 𝑗10 + 10 − 𝑗30

𝑍 = 30 +
250

13
+ 𝑗 [𝑋 −

50

13
]

The Circuit shown in fig above will resonate, if imaginary part is zero,

Therefore, X –
50

13
= 0

Therefore, X = 
50

13
= 3.646Ω
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18EE32 – ELECTRIC CIRCUIT ANALYSIS

Module 3b: Transient Analysis



Introduction
1. A network in which branch currents & node

voltages are not changing with respect to time is said

to be in steady state.

2. When a network is switched from one condition to

another by change in applied voltage or by change in

applied voltage or by change in one of the circuit

elements, during a period of time, branch currents &

voltages change from their former value to new one.

This time interval is called transition period. The

response or the output of network during transition

period is called transient response of network.



3. If after transition period, network condition is not

disturbed, then the network attains steady state at

infinite time.

4. Energy storing elements such as inductor &

capacitor results in a differential equation whose

solution consists of 2 parts, the complementary

function & Particular solution.

5. The Complementary function represents transient

part of solution which decays with time, while

remaining term represents steady state part of

solution.



Initial Conditions in elements

Resistor

Consider a circuit which consists of resistor R connected as

shown in Figure 1.1. The circuit resistor R is connected by a

voltage source V in series with switch K as shown in Figure.

When the switch K is closed at t=0 the current I is flowing in a

circuit and is given by I = V/R



Inductor

Consider a circuit which consists of inductor L connected as shown in 

Figure 1.2. The inductor L is connected by a voltage source V in series 

with switch K as shown in Figure. When the switch K is closed at t=0 

the current flowing in a inductor at t = 0+ is zero the inductor acts as a 

open circuit at t = 0+ which is as shown in Figure 1.3. 

The final-condition equivalent circuit of

an inductor is derived from the basic

relationship

Under steady state condition, rate of change

of current flowing in inductor is di/ dt = 0.

This means, v = 0 and hence L acts as short

at t = ∞. The equivalent circuits of an

inductor at t = ∞ is as shown in Figure 1.4



Capacitor

Consider a circuit which consists of capacitor C connected as shown in

Figure 1.5. The capacitor is connected by a voltage source V in series

with switch K as shown in Figure 1.5. When the switch K is closed at

t=0 capacitor C acts as short circuit and current flows in a capacitor

instantaneously.

Capacitor circuit at t = 0+

If the capacitor is initially charged

with charge q0 coulombs at t=0-, then

at t=0+ the capacitor is equivalent to

voltage source v0 = q0/ c which is as

shown in Figure 1.6

Capacitor circuit at t = 0+



The final condition of capacitor circuit is derived from the 

following relationship. The voltage across capacitor is

Under steady state condition, rate of change of voltage capacitor is dv / 

dt = 0. This means, v = 0 and hence C acts as open circuit at t = ∞. The 

equivalent circuits of a capacitor at t = ∞ is as shown in Figure 1.7

Capacitor circuit at t = ∞

If the capacitor is initially charged with 

voltage v0 then the final condition at t = ∞ 

of a capacitor circuit is replaced with 

voltage source v0 with open circuit which 

is as shown in Figure 1.8

Capacitor circuit at t = ∞



Table 1.1: Initial and Final Conditions



Procedure for Evaluating Initial Conditions: 

1. Before closing or opening the switch at t=0- find the 
history of the network, at t=0- find i(0-), v(0-), i.e., current 
through inductor and voltage across the capacitor before 
switching 

2. Draw the circuit after switching operation at t=0+. 

3. Replace inductor with open circuit or by current source 
having source 

4. Replace capacitor with short circuit or with a voltage 
source 𝑉𝐶 =

𝑞0

𝐶
if it has an initial charge 𝑞0. 

5. Find i(0+), and v(0+) at t=0+ 

6. Obtain an expression for di/dt and find di/dt at t=0+ 

7. Obtain an expression for 
𝑑2𝑖

𝑑𝑡2
and find 

𝑑2𝑖

𝑑𝑡2
at t=0+ 

8. Similarly determine voltages across circuit elements and 
its derivatives.



DC Excitation to series R-L Circuit
i) D.C response of R-L series circuit

• At t=0-, 𝑖𝐿 0− = 0
Since the current through inductor cannot change instantaneously, 𝑖𝐿 0+ = 0
• Let initial current be 𝐼0. Here 𝐼0 = 0.

• Assume switch K is closed at t=0

• After closing the switch, apply KVL

V = iR + L
𝑑𝑖

𝑑𝑡
𝑉

𝑅
= 𝑖 +

𝐿

𝑅

𝑑𝑖

𝑑𝑡
𝑉

𝑅
− 𝑖 𝑑𝑡 =

𝐿

𝑅
𝑑𝑖

𝑅

𝐿
𝑑𝑡 = 

𝑑𝑖

(
𝑉

𝑅
−𝑖)

Integrating both sides

න
𝑅

𝐿
𝑑𝑡 = න

𝑑𝑖

(
𝑉
𝑅
− 𝑖)

𝑅

𝐿
𝑡 = -ln[

𝑉

𝑅
− 𝑖] + 𝐾| -------(1)



To find 𝐾|,At t = 0, i = 𝐼0 = 0.

0 = -ln (
𝑉

𝑅
) + 𝐾|

Therefore, 𝐾| = ln ( 
𝑉

𝑅
) --------(2)

Substitute equation (2) in (1), we get 
𝑅

𝐿
t  = -ln [

𝑉

𝑅
-i] + ln [

𝑉

𝑅
]

𝑅

𝐿
𝑡 = ln[

𝑉
𝑅

(
𝑉
𝑅
− 𝑖)

]

Taking antilog, 𝑒
𝑅

𝐿
𝑡
=

𝑉/𝑅

(
𝑉

𝑅
−𝑖)

𝑉

𝑅
− 𝑖 =

𝑉

𝑅
. 𝑒

−
𝑅

𝐿
𝑡

𝑖 = 
𝑉

𝑅
-
𝑉

𝑅
. 𝑒

−
𝑅

𝐿
𝑡 𝑉

𝑅
is steady state part

𝑖 = 
𝑉

𝑅
(1 - 𝑒

−
𝑅

𝐿
𝑡
)

𝑉

𝑅
. 𝑒

−
𝑅

𝐿
𝑡

is transient part.
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DC Excitation to series R-L Circuit
i) D.C response of R-L series circuit

• At t=0-, 𝑖𝐿 0− = 0
Since the current through inductor cannot change instantaneously, 𝑖𝐿 0+ = 0
• Let initial current be 𝐼0. Here 𝐼0 = 0.

• Assume switch K is closed at t=0

• After closing the switch, apply KVL

V = iR + L
𝑑𝑖

𝑑𝑡
𝑉

𝑅
= 𝑖 +

𝐿

𝑅

𝑑𝑖

𝑑𝑡
𝑉

𝑅
− 𝑖 𝑑𝑡 =

𝐿

𝑅
𝑑𝑖

𝑅

𝐿
𝑑𝑡 = 

𝑑𝑖

(
𝑉

𝑅
−𝑖)

Integrating both sides

න
𝑅

𝐿
𝑑𝑡 = න

𝑑𝑖

(
𝑉
𝑅
− 𝑖)

𝑅

𝐿
𝑡 = -ln[

𝑉

𝑅
− 𝑖] + 𝐾| -------(1)



To find 𝐾|,At t = 0, i = 𝐼0 = 0.

0 = -ln (
𝑉

𝑅
) + 𝐾|

Therefore, 𝐾| = ln ( 
𝑉

𝑅
) --------(2)

Substitute equation (2) in (1), we get 
𝑅

𝐿
t  = -ln [

𝑉

𝑅
-i] + ln [

𝑉

𝑅
]

𝑅

𝐿
𝑡 = ln[

𝑉
𝑅

(
𝑉
𝑅
− 𝑖)

]

Taking antilog, 𝑒
𝑅

𝐿
𝑡
=

𝑉/𝑅

(
𝑉

𝑅
−𝑖)

𝑉

𝑅
− 𝑖 =

𝑉

𝑅
. 𝑒

−
𝑅

𝐿
𝑡

𝑖 = 
𝑉

𝑅
-
𝑉

𝑅
. 𝑒

−
𝑅

𝐿
𝑡 𝑉

𝑅
is steady state part

𝑖 = 
𝑉

𝑅
(1 - 𝑒

−
𝑅

𝐿
𝑡
)

𝑉

𝑅
. 𝑒

−
𝑅

𝐿
𝑡

is transient part.
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Differentiating above Equation






